Amazon cover image
Image from Amazon.com

The Road to General Intelligence [electronic resource] / by Jerry Swan, Eric Nivel, Neel Kant, Jules Hedges, Timothy Atkinson, Bas Steunebrink.

By: Contributor(s): Material type: TextTextSeries: Studies in Computational Intelligence ; 1049Publisher: Cham : Springer International Publishing : Imprint: Springer, 2022Edition: 1st ed. 2022Description: XIV, 136 p. 26 illus., 18 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783031080203
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q342
Online resources:
Contents:
Introduction -- Challenges for Deep Learning -- Challenges for Reinforcement Learning -- Work on Command: The Case for Generality -- Architecture.
In: Springer Nature eBookSummary: Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intelligence (evidenced by the kind of cross-domain flexibility enjoyed by humans) will spawn an industry worth billions and transform the range of viable automation tasks.The recent notable successes of Machine Learning has lead to conjecture that it might be the appropriate technology for delivering General Intelligence. In this book, we argue that the framework of machine learning is fundamentally at odds with any reasonable notion of intelligence and that essential insights from previous decades of AI research are being forgotten. We claim that a fundamental change in perspective is required, mirroring that which took place in the philosophy of science in the mid 20th century.We propose a framework for General Intelligence, together with a reference architecture that emphasizes the need for anytime bounded rationality and a situated denotational semantics. We given necessary emphasis to compositional reasoning, with the required compositionality being provided via principled symbolic-numeric inference mechanisms based on universal constructions from category theory. • Details the pragmatic requirements for real-world General Intelligence. • Describes how machine learning fails to meet these requirements. • Provides a philosophical basis for the proposed approach. • Provides mathematical detail for a reference architecture. • Describes a research program intended to address issues of concern in contemporary AI. The book includes an extensive bibliography, with ~400 entries covering the history of AI and many related areas of computer science and mathematics.The target audience is the entire gamut of Artificial Intelligence/Machine Learning researchers and industrial practitioners. There are a mixture of descriptive and rigorous sections, according to the nature of the topic. Undergraduate mathematics is in general sufficient. Familiarity with category theory is advantageous for a complete understanding of the more advanced sections, but these may be skipped by the reader who desires an overall picture of the essential concepts This is an open access book.
List(s) this item appears in: e-Book / ebook
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Challenges for Deep Learning -- Challenges for Reinforcement Learning -- Work on Command: The Case for Generality -- Architecture.

Open Access

Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intelligence (evidenced by the kind of cross-domain flexibility enjoyed by humans) will spawn an industry worth billions and transform the range of viable automation tasks.The recent notable successes of Machine Learning has lead to conjecture that it might be the appropriate technology for delivering General Intelligence. In this book, we argue that the framework of machine learning is fundamentally at odds with any reasonable notion of intelligence and that essential insights from previous decades of AI research are being forgotten. We claim that a fundamental change in perspective is required, mirroring that which took place in the philosophy of science in the mid 20th century.We propose a framework for General Intelligence, together with a reference architecture that emphasizes the need for anytime bounded rationality and a situated denotational semantics. We given necessary emphasis to compositional reasoning, with the required compositionality being provided via principled symbolic-numeric inference mechanisms based on universal constructions from category theory. • Details the pragmatic requirements for real-world General Intelligence. • Describes how machine learning fails to meet these requirements. • Provides a philosophical basis for the proposed approach. • Provides mathematical detail for a reference architecture. • Describes a research program intended to address issues of concern in contemporary AI. The book includes an extensive bibliography, with ~400 entries covering the history of AI and many related areas of computer science and mathematics.The target audience is the entire gamut of Artificial Intelligence/Machine Learning researchers and industrial practitioners. There are a mixture of descriptive and rigorous sections, according to the nature of the topic. Undergraduate mathematics is in general sufficient. Familiarity with category theory is advantageous for a complete understanding of the more advanced sections, but these may be skipped by the reader who desires an overall picture of the essential concepts This is an open access book.

There are no comments on this title.

to post a comment.

Universiti Islam Sultan Sharif Ali
Spg 347, Jalan Pasar Gadong, BE1310
Brunei Darussalam

+ 673 2462000 ext 603/604

library@unissa.edu.bn
norhasinah.moksin@unissa.edu.bn
syukriyyah.kahar@unissa.edu.bn

Library Operating Hours:

Gadong Campus School Terms:
Monday – Thursday & Saturday:
8.00 AM – 5.00 PM
Friday, Sunday & Public Holidays :
Closed

Revision & Exam Week:
Monday – Wednesday:
8.00 AM – 9.00 PM
(Unless Otherwise Stated)
Thursday & Saturday:
8.00 AM – 5.00 PM
Friday & Sunday :
8.00 AM – 12.00 PM & 1.30 PM – 5.00 PM
Public Holidays :
Closed

Mid / Inter-Semester Break / Long Vacation:
Monday – Thursday & Saturday:
8.00 AM – 12.15 PM & 1.30 PM – 4.30 PM
Friday, Sunday & Public Holidays :
Closed

Sinaut Campus

School Terms:
Monday – Thursday & Saturday:
8.00 AM – 4.30 PM
Friday, Sunday & Public Holidays :
Closed

Revision & Exam Week:
Monday – Thursday & Saturday:
8.00 AM – 4.30 PM
Friday, Sunday & Public Holidays :
Closed

Mid / Inter-Semester Break / Long Vacation:
Monday – Thursday & Saturday:
8.00 AM – 12.15 PM & 1.30 PM – 4.30 PM
Friday, Sunday &
Public Holidays :
Closed

Flag Counter

© All Right Reserved 2023. Universiti Islam Sultan Sharif Ali

Administered and upheld by
 Rayyan Secutech