Amazon cover image
Image from Amazon.com

Multivariate Statistical Analysis in the Real and Complex Domains [electronic resource] / by Arak M. Mathai, Serge B. Provost, Hans J. Haubold.

By: Contributor(s): Material type: TextTextPublisher: Cham : Springer International Publishing : Imprint: Springer, 2022Edition: 1st ed. 2022Description: XXVII, 921 p. 3 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030958640
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 519.5 23
LOC classification:
  • QA276-280
Online resources:
Contents:
1. Mathematical Preliminaries -- 2. The Univariate Gaussian and Related Distribution -- 3. Multivariate Gaussian and Related Distributions -- 4. The Matrix-variate Gaussian Distribution -- 5. Matrix-variate Gamma and Beta Distributions -- 6. Hypothesis Testing and Null Distributions -- 7. Rectangular Matrix-variate Distributions -- 8. Distributions of Eigenvalues and Eigenvectors -- 9. Principal Component Analysis -- 10. Canonical Correlation Analysis -- 11. Factor Analysis -- 12. Classification Problems -- 13. Multivariate Analysis of Variance (MANOVA) -- 14. Profile Analysis and Growth Curves -- 15. Cluster Analysis and Correspondence Analysis.
In: Springer Nature eBookSummary: This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.
List(s) this item appears in: e-Book / ebook
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1. Mathematical Preliminaries -- 2. The Univariate Gaussian and Related Distribution -- 3. Multivariate Gaussian and Related Distributions -- 4. The Matrix-variate Gaussian Distribution -- 5. Matrix-variate Gamma and Beta Distributions -- 6. Hypothesis Testing and Null Distributions -- 7. Rectangular Matrix-variate Distributions -- 8. Distributions of Eigenvalues and Eigenvectors -- 9. Principal Component Analysis -- 10. Canonical Correlation Analysis -- 11. Factor Analysis -- 12. Classification Problems -- 13. Multivariate Analysis of Variance (MANOVA) -- 14. Profile Analysis and Growth Curves -- 15. Cluster Analysis and Correspondence Analysis.

Open Access

This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.

There are no comments on this title.

to post a comment.

Universiti Islam Sultan Sharif Ali
Spg 347, Jalan Pasar Gadong, BE1310
Brunei Darussalam

+ 673 2462000 ext 603/604

library@unissa.edu.bn
norhasinah.moksin@unissa.edu.bn
syukriyyah.kahar@unissa.edu.bn

Library Operating Hours:

Gadong Campus School Terms:
Monday – Thursday & Saturday:
8.00 AM – 5.00 PM
Friday, Sunday & Public Holidays :
Closed

Revision & Exam Week:
Monday – Wednesday:
8.00 AM – 9.00 PM
(Unless Otherwise Stated)
Thursday & Saturday:
8.00 AM – 5.00 PM
Friday & Sunday :
8.00 AM – 12.00 PM & 1.30 PM – 5.00 PM
Public Holidays :
Closed

Mid / Inter-Semester Break / Long Vacation:
Monday – Thursday & Saturday:
8.00 AM – 12.15 PM & 1.30 PM – 4.30 PM
Friday, Sunday & Public Holidays :
Closed

Sinaut Campus

School Terms:
Monday – Thursday & Saturday:
8.00 AM – 4.30 PM
Friday, Sunday & Public Holidays :
Closed

Revision & Exam Week:
Monday – Thursday & Saturday:
8.00 AM – 4.30 PM
Friday, Sunday & Public Holidays :
Closed

Mid / Inter-Semester Break / Long Vacation:
Monday – Thursday & Saturday:
8.00 AM – 12.15 PM & 1.30 PM – 4.30 PM
Friday, Sunday &
Public Holidays :
Closed

Flag Counter

© All Right Reserved 2023. Universiti Islam Sultan Sharif Ali

Administered and upheld by
 Rayyan Secutech